If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=8
We move all terms to the left:
n^2+n-(8)=0
a = 1; b = 1; c = -8;
Δ = b2-4ac
Δ = 12-4·1·(-8)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{33}}{2*1}=\frac{-1-\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{33}}{2*1}=\frac{-1+\sqrt{33}}{2} $
| nCn-2=28 | | 4*t*t=36 | | x^2-36=8 | | 5b+34=-2(1-7b | | 2/3x+5=-5 | | 4x-1+6x+58=87 | | 5k=2k+6=6 | | 5K=2k+6 | | 2b/3=4 | | 7x+2=3x-7+9 | | 5b/7+2=10 | | x-5/8=128 | | 12a^2+48a+51=0 | | x/8=128 | | 6+4/x=-5 | | 2*(x-5)=42 | | x/3+7=3 | | |j|=|2j+3| | | 12000+15*27=x | | 12000+15x27=x | | 1/2/n=7/4 | | 6(f-6)=36 | | 5b+3=6 | | 6(f-6=36 | | 0=x~2 | | (x-9)/15=1 | | X/5=15+x/3 | | P=20-5x | | 2b/3+4=8 | | 2×21=5×-3y-3y-12 | | A+3=-5a+9 | | 105=6+11x |